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ABSTRACT
Since its creation, the Global Positioning System (GPS) has grown
from a limited purpose positioning system to a ubiquitous trusted
source for positioning, navigation, and timing data. To date, re-
searchers have essentially taken a signal processing approach to
GPS security and shown that GPS is vulnerable to jamming and
spoofing.

In this work, we systematically map out a larger attack surface
by viewing GPS as a computer system. Our surface includes higher
level GPS protocol messages than previous work, as well as the
GPS OS and downstream dependent systems. We develop a new
hardware platform for GPS attacks, and develop novel attacks against
GPS infrastructure. Our experiments on consumer and professional-
grade receivers show that GPS and GPS-dependent systems are sig-
nificantly more vulnerable than previously thought. For example,
we show that remote attacks via malicious GPS broadcasts are ca-
pable of bringing down up to 30% and 20% of the global CORS
navigation and NTRIP networks, respectively, using hardware that
costs about the same as a laptop. In order to improve security, we
propose systems-level defenses and principles that can be deployed
to secure critical GPS and dependent systems.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-Communication
Networks—Security and Protection

General Terms
Experimentation,Security

Keywords
GPS,Security,RF Attacks

1 Introduction
The Global Position System (GPS) transmits timing information at
atomic clock precision to receivers throughout the world. GPS has
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grown from a limited purpose positioning system to a ubiquitous
trusted source for positioning, navigation, and timing (PNT) data.
While GPS is commonly known for personal navigation, it is also
widely used for precise timing and frequency calibration. For ex-
ample, cell phone towers (e.g., Verizon) use GPS to calibrate the
frequency and timing for transmissions, and the power grid uses
GPS to coordinate time stamps for phasor measurements in order
to locate power line faults.

All GPS receivers work on the same basic principles to calculate
a navigation solution in 3D space and time. The navigation solution
is calculated by trilateration where the receiver measures its dis-
tance from four (or more) satellites: one to resolve each dimension
in space-time. Each satellite generates and broadcasts a unique,
public pseudo-random number (PRN) stream called the coarse ac-
quisition (C/A) code, which repeats every 1ms. The current time,
as determined by an atomic clock on each satellite, week number,
and other navigation information is modulated as a navigation mes-
sage on top of the C/A code. GPS receivers generate their own lo-
cal replica of each satellite’s C/A code and estimate the time delta
required to align the local replica to the received copy. The time
delta, along with the transmission times of each C/A code signal
form the distance measurements called pseudoranges. The receiver
also decodes the navigation data in order to calculate the satellites’
positions and clock offsets. All this information is used to accu-
rately estimate the 3D position and time. In this paper, we focus on
the civil GPS signal, which is transmitted without authentication
information.

Previous research has focused on two attacks against GPS: jam-
ming and spoofing. Jamming simply transmits noise in the GPS
frequency band, preventing a receiver from locking onto the GPS
signal. Spoofing attacks are a very specific type of attack that forge
the information used to calculate pseudoranges. These attacks are
not on the receiver itself per se, as the receiver operates properly
just with bogus input data. At a high level, previous work was lim-
ited to showing that receivers when given bogus data will output a
bogus navigation solution. They did not test for flaws in the actual
receiver, or how malicious input flows down to dependent systems.

In this paper, we investigate a larger attack surface against GPS,
including the GPS software stack and how errors affect dependent
systems. In order to do this, we create new system that allows
novel attacks compared to spoofing and jamming. For example,
unlike spoofing which misleads and jamming which prevents sig-
nal acquisition, we show a 45 second GPS message can disable
over 30% of the Continually Operating Reference Station (CORS)
network, which is used for safety and life-critical applications. The
overall landscape of GPS vulnerabilities is startling, and our exper-
iments demonstrate a significantly larger attack surface than previ-



ously thought. In order to help secure GPS systems, we also pro-
pose and develop GPS attack defenses not previously considered in
the literature.

In particular, we design novel:
1. GPS Data Level Attacks. Previous spoofing attacks are limited
to only modifying pseudo-ranges of satellites in view each by some
fractional amount. In this paper, we investigate producing good,
bad, and wrong data at higher-levels such as the navigation message
in real time with the valid GPS signal. We call these GPS data-
level attacks to distinguish them with previous work in spoofing,
which was not capable of carrying out attacks of this nature. The
advantage is data-level attacks can cause more damage than simple
spoofing. For example, we show data-level attacks can remotely
crash a high-end professional receiver.
2. GPS Receiver Software Attacks. GPS receivers are computers.
Low-end receivers run a basic OS stack (like Windows CE) and
simple software. High-end receivers add networking capabilities
and complex software, including web-servers and FTP servers, and
thus are significantly more complex. We show the software stack
can be compromised, in some cases remotely. Since GPS receivers
are typically treated as devices, not computers, such vulnerabilities
are likely to go unpatched, and represent a serious vulnerability in
critical applications.
3. GPS Dependent System Attacks. Higher-level software and
systems routinely treat GPS navigation solutions as trusted inputs.
We investigate how our attacks at the GPS level can flow up to de-
pendent software. For example, we show that we can permanently
de-synchronize the date of Phasor Measurement Units (PMUs) used
in the smart grid. We also show we can cause UNIX epoch rollover
in a few minutes, and year 100,000 (the first 6-digit year) rollover
in about 2 days. These attacks are carried out via RF, showing the
attacks can remotely exploit latent bugs that depend upon time and
date, that cannot be carried out by spoofers described in previous
work which modify only the PRN.
Challenges. Typical software testing assumes generating input for
the software is easy. Things are quite different in the RF domain.
In particular, in order to test data-level GPS attacks via RF, we need
to be able to generate and broadcast our own GPS signal just like a
real satellite. Further, receivers have antennas that can distinguish
if there are multiple signals, making it potentially possible for a
receiver to detect spoofing. Finally, receivers are literally boxes
with no programmable API.

Previous work in spoofing has relied upon simulators which cost
several thousand dollars and are not suitable for long-range spoof-
ing, or created specialized platforms that performed relatively spe-
cialized spoofing attacks against pseudo-range measurements (e.g., [4]).
They also have not shown that they can affect the software stack,
only that when given garbage input, they will output a correct with
respect to the garbage navigation solution.

In order to address the above challenges, we detail the design
and development of a novel GPS phase-coherent signal synthesizer
(PCSS). The PCSS is like a hybrid receiver and satellite in a box.
The PCSS has an input antenna that receives live GPS signals, and
outputs malicious signals. In order to be stealthy, our output signal
is phase coherent, meaning it is in code phase sync with the real
GPS satellites. Phase coherence means a receiver won’t perceive
a difference in phase, making our attacks more stealthy. 1 More
importantly, the PCSS hardware and software is designed to allow
full programmatic control over the GPS signals in real time. The
PCSS allows us to generate good, bad, and malicious GPS data to
test the larger attack surface.
1An antenna can still distinguish direction. However, launching the
attacks from overhead, e.g., via a UAV, is trivial.

The total hardware cost of the PCSS is about the same as a laptop
– around $2,500.

Our attacks are applicable in several settings, such as:
1. Manipulate Positioning, Navigation, and Timing (PNT). Planes,
cars, trucks, ships, and people all rely on civil GPS to get from
point A to point B. GPS is also used extensively for tracking, e.g.,
the State of California uses GPS-enabled ankle bracelets to track
parolees in real time [11]. Cell phone towers, traffic lights, power
stations, air traffic control towers, SCADA systems, and other cyber-
physical infrastructure use GPS to coordinate activities precisely in
the time and frequency domain [20]. Like previous work, our at-
tack can be used to fool receivers into thinking they are somewhere
they are not. However, we also show novel attacks that target the
data level, such as showing that we can reset the current year of a
receiver, e.g., to 2038, the year of UNIX epoch rollover.
2. Manipulate Reference Stations to Amplify Attacks. There
are a variety of other critical positioning, navigation, and timing
networks that provide PNT information, such as the CORS net-
work [10], Networked Transport of RTCM via Internet Protocol
(NTRIP) network [1], and the FAA Wide Area Augmentation Sys-
tem (WAAS). Reference stations maintain a static position p, and
also use GPS to calculate their perceived updated position in space-
time p′. They can then calculate differential information p − p′,
which they then use to estimate GPS error to broadcast to other re-
ceivers. Reference stations allow dependent receivers to calculate
sub-centimeter accurate navigation solutions using civilian GPS.
This information is essential to safety and life-critical applications,
e.g., WAAS is used in all phases of airplane flight.

We demonstrate spoofing against reference stations, which then
amplifies our attack by re-transmitting the faulty information to de-
pendent systems. In addition, our experiments show we can re-
motely crash over 30% of the CORS and NTRIP receivers, which
are used in a variety of applications ranging from surveying to un-
manned vehicle navigation.
3. Manipulate Down-stream Systems. GPS receivers feed com-
puter systems. Unlike a typical computer, however, there are two
access points to attacking a receiver: the RF port and the ethernet
port. We show both ports have vulnerabilities which can be ex-
ploited. For example, we show data-level attacks via the GPS RF
can remotely trigger UNIX epoch rollover, simulate a year 100K
rollover in 2 days, and remote ethernet attacks can give us a root
shell on the receiver itself.

GPS Defenses. Our findings suggest despite the fact that GPS is
an unauthenticated broadcast protocol, current receivers treat any
incoming signal as guaranteed correct. Worse, receivers often run
full OSes with network services. Together, the possibility of RF
and ethernet attacks creates a large attack surface. Previous work
has suggested long-term fixes such as adding authentication to the
civilian signal, adding new directional antennas, and other changes
that require hardware modifications [4, 6, 13, 15]. However, such
modifications face potentially lengthy deployment cycles, because
significant hardware infrastructure must be changed. While we be-
lieve such defenses are necessary in the long term, they (a) don’t
help protect critical services dependent on GPS in the short term,
and (b) don’t address attacks at the software level.

We suggest shorter-term defenses along two lines to limit the at-
tack surface. First, in order to defend against data-level attacks,
we suggest an Electronic GPS Attack Detection System (EGADS)
that can at least warn when an attack is underway, and an Electronic
GPS Whitening System (EGWS) that re-broadcasts a whitened sig-
nal to otherwise vulnerable receivers. Unlike adding authentication
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(e.g., as done with military GPS), EGADS and EGWS would re-
quire no changes to already deployed hardware or software. Sec-
ond, we suggest stronger verification of GPS receiver software to
help prevent errors. Third, in order to defend against GPS OS at-
tacks, we recommend regular software updates for IP-enabled de-
vices. GPS receivers have the benefit of running a known set of pro-
grams on a fixed hardware platform. As a result, patching should be
significantly easier than on a general purpose computing platform.

Contributions Overall, our contributions are:

• A systematic investigation of the attack surface for GPS. We
show several new practical attacks that can disable a large
percentage of receivers used in critical operations.
• We design and build a PCSS, a novel hardware platform for

demonstrating data-level attacks are feasible.
• Novel attacks against GPS software. Although on the one

hand all software has bugs, we demonstrate a unique entry
point: the RF port.
• We propose, design, and build an electronic GPS attack de-

tection system that does not require changes to existing re-
ceivers as a short-term defense. We also make recommen-
dations for systematic changes in the GPS architecture that
would increase overall security.

2 The GPS Signal and Previous Attacks
2.1 The GPS Signal
The Global Positioning System is a constellation of nominally 30
satellites in medium-Earth orbit (satellites on occasion fail and are
replaced by new satellites, so the exact number at any given time
is variable). Each satellite broadcasts ranging signals that can be
used by GPS receivers to calculate the receiver’s position and the
current time. These satellites are controlled by the GPS Control
Segment on Earth, which is responsible for estimating each satel-
lite’s orbital and clock parameters and uploading this information
to the satellites. Each of these satellites has an on-board atomic
clock for accurate time-keeping. The satellites broadcast GPS sig-
nals at two L-band carrier frequencies called L1 (1575.42 MHz)
and L2 (1227.6 MHz). Newer satellites also broadcast at the L5
frequency (1176.45 MHz). In this section we recap the basics of
the GPS signal; textbooks such as [9] provide more details.

The L1 GPS signal consists of a military signal called Y-code
that is modulated in phase-quadrature with a civil signal called the
Coarse Acquisition (C/A) code. Some newer satellites are also ca-
pable of broadcasting a second military code called M-code. The
military Y and M codes are encrypted, which provides a means for
military receivers to authenticate the signal. The civil C/A code is
not encrypted and does not contain a built-in authentication mech-
anism. Only special military hardware is capable of receiving the
military codes, and details of how to generate those codes are clas-
sified. Furthermore, receivers capable of decoding the military sig-
nals are relatively expensive, their inner workings a closely guarded
secret, and are available to only a very small percentage of users
authorized by the US Department of Defense. The vast majority
of receivers, including all receivers providing information to US
critical infrastructure, network time servers, cell phones, and auto-
mobiles, utilize the unauthenticated civil signals. For these reasons,
the civil signal is the focus of this work.

Simplistically, signal production begins on the satellite with the
generation of a sine wave (also called the carrier) at the broad-
cast frequency. The L1 carrier is a continuous-wave carrier sig-
nal broadcast from each satellite at precisely 1575.42 MHz (ignor-

L1 Carrier (1575.42 MHZ)

C/A Code (1.023 MHZ)

Navigation Message (50 HZ)

P(Y)-Code (10.23 MHZ)

L2 Carrier (1227.6 MHZ) Military Signal
L2       

L1
    Civilian and

        Military Signal

Figure 1: An overview of the GPS radio signal production. (⊕ rep-
resents modulo two addition of signals,⊗ represents signal mixing)

ing satellite clock frequency error). Bits are then modulated onto
this carrier using Binary Phase-Shift Keying (BPSK). In BPSK, bit
changes are encoded by switching the phase of the broadcast sine
wave by 180 degrees, essentially inverting the broadcast sine wave.
Fundamentally, there are two types of information modulated onto
this carrier: a high-rate ranging code (1.023 million bps for C/A
code) and a low-rate navigation message (50 bps).

The Coarse Acquisition (C/A) ranging code is a time-based pseudo-
random number (PRN) sequence unique to each GPS satellite. The
PRN codes are quasi-orthogonal, which enables code-division mul-
tiple access (CDMA) transmission of the GPS signals. This means
that multiple satellites broadcasting at the same frequency but with
different PRN sequences can be independently tracked and differ-
entiated from each other. Consistent with CDMA convention, each
bit of PRN code is called a chip.

The nominal broadcast time of each chip in the C/A code is well
known and can be calculated from the GPS Interface Control Doc-
ument (ICD) [3]. GPS receivers generate their own local replica
of the code broadcast by each satellite and shift it in time until it
lines up with the incoming signal. Simplistically, if the receiver
has to delay its local PRN generation time relative to the nominal
transmit time by td for it to line up with the incoming signal from
the satellite, then it must have taken the signal that same time td
to travel from the satellite to receiver. The range from the receiver
to the satellite must therefore be ρ = c · td, where c is the speed
of light. Practically speaking, the quantity ρ differs from the true
range due to a variety of factors, most significantly the fact that the
receiver’s clock can not a priori be considered well aligned with
GPS time (even 1 µs of error in the receiver’s clock would equate
to 300 m of error in the range measurement). Some other signifi-
cant errors are satellite clock error and atmospheric delays. Since
it differs from the true range to the satellite, the quantity ρ = c · td
is typically called the pseudorange, and it is the fundamental raw
measurement made by the receiver.

The purpose of the high-rate PRN ranging code (again, some-
what simplistically) is to allow the receiver to make the pseudor-
ange measurement just described. The purpose of the low-rate nav-
igation data message is to provide information used by higher-level
applications in the receiver to derive a navigation solution from the
suite of pseudorange measurements (one for each GPS satellite in



view). To do that, the receiver needs to know (1) the position of
the satellite at the time of signal transmission, which is encoded
in the navigation message and satellite ephemerides, and (2) any
deviations in the signal’s time of transmit from nominal, which is
encoded in the navigation message as satellite clock error coeffi-
cients. The message itself is divided into frames and subframes.
The specific content of this message is critical to the attacks de-
scribed later in this paper, and is therefore described in more detail
below.

The first navigation subframe contains the time of week in sec-
onds and week number that the navigation data was issued, as well
as an identifier for the current set of navigation data called the
IODC, information regarding the broadcasting satellite’s clock pa-
rameters, and the health of the satellite.

The second and third navigation subframes primarily contain the
satellite’s ephemeris. This data provides sufficient information to
the receiver to calculate the satellite’s position to a few meters or
better, and consists of numerous parameters as well as a number
used to signify an ephemeris update, called the IODE. While these
parameters are not strictly constant, it is worth noting that in normal
operation, many of the parameters change only slowly (e.g., update
every 2-4 hours). The ephemeris data takes about 30 seconds to
receive.

The fourth and fifth navigation subframes primarily contain the
almanac. This contains location data similar to that found in the
ephemeris, but less accurate and for the entire constellation. It
also has information regarding predictions of ionospheric condi-
tions which can change the time of flight for a signal traveling from
outer space to the Earth. The complete almanac is 25 frames total,
requiring about 12.5 minutes total to receive.

In order to form a navigation solution, a receiver will (1) gener-
ate pseudorange observables by continuously tracking all in-view
GPS L1 C/A code signals and decoding the navigation messages,
then (2) solve for receiver position using the pseudorange observ-
ables and the information in the navigation message. Typically the
receiver has four unknowns – it’s X,Y, Z position and its own re-
ceiver clock error. Therefore it needs pseudorange measurements
from four satellites to solve for these four unknowns.

2.2 Previous Attacks
The concept of GPS spoofing has been known for over a decade
in the civil community (and much longer within the military com-
munity), with the first public documentation of the spoofing threat
occurring in 2001 Volpe report [2]. A key finding of this report
predicts most aptly that “[a]s GPS further penetrates into the civil
infrastructure, it becomes a tempting target that could be exploited
by individuals, groups or countries”.

Previous discussed attacks on GPS receivers have included jam-
ming and spoofing. In jamming, significant RF noise is transmitted
so that the receiver can no longer pull the satellite signal out of
the noise. More interestingly, spoofing attacks generate counterfeit
GPS signals that cause the receiver to have incorrect position and
time solutions. Since the civil C/A code contains no authentication
mechanism and all required signal details are in a public ICD, the
generation of these spoofed signals is straightforward.

Note that both of these previous styles of attack target the for-
mation of the receiver’s pseudorange, or step (1) from the pre-
vious section. They are not attacks on the receiver software it-
self. Rather, they just give the receiver’s software incorrect mea-
surements, yielding an incorrect position solution. Previous work
has accomplished these incorrect measurements in two main ways:
simple GPS simulator attacks and more sophisticated C/A code
spoofing attacks.

Simple attacks use GPS simulators, which are commercial de-
vices used to test the performance of GPS receivers. Simulators
generate the L1 signal using either default data, or the user can up-
load the specification of a signal in a standard format, e.g., Spirent
uses NMEA [16]. The main purpose of simulators is offline test-
ing. Simulators for a constellation of satellites typically cost several
thousand dollars. In 2002 researchers rented a simulator, added an
amplifier, and showed that nearby receivers would lock onto the
signal [19].

Simulators are designed to be able to create any realistic suite
of GPS signals, and can therefore be programmed to create signals
consistent with what a receiver would see at any specific place on
the planet. However, they are designed to be connected directly to
a receiver for testing purposes. When simply connected to a broad-
cast antenna, their signals compete with the true satellite signals the
receiver was already tracking. Since the simulator has no knowl-
edge nor mechanism to process what is currently being broadcast
by the GPS satellites (it only knows what it was programmed to do),
its signals will generally be dramatically inconsistent with what the
receiver was already tracking. A well-designed receiver can use
this inconsistency to detect and reject the spoofed signal.

A more sophisticated C/A code spoofing attack, pioneered in the
civil domain by Humphreys et al. [4], contains a GPS receiver
that allows it to decode the precise signal being broadcast by satel-
lites in the area. This is then rebroadcast to victim receivers, but
with a transmit delay that can be varied relative to the real sig-
nal. This causes the satellites to appear to be at a different ranges
to the receiver than they really are, causing the receiver to output
an incorrect navigation solution. The intriguing thing about this
style of attack is that the spoofed signal can originally be made
to replicate the broadcast signals perfectly, then gradually moved
off target. Since the error is created gradually, this style of attack
can be made very difficult to detect. However, it also implies that
it takes significant time to create significant navigation errors this
way. Note that this style of attack is not fundamentally changing
the navigation message, it is just adjusting the apparent pseudo-
range to the satellite. Our PCSS attack platform is conceptually
similar to this style of attack, except that it is designed to allow for
live programmatic changes to the GPS data stream.

For stealthy GPS spoofing and satellite lock takeover, several
requirements are discussed in depth in Tippenhaurer et al. [17].
Although an attacker can spoof multiple receivers to an arbitrary
position (eventually), maintaining the perceived configuration of
the receivers is shown to limit the locations from which an attacker
can broadcast.

Recall from the previous subsection that the formation of a navi-
gation solution can be divided into two steps: (1) the creation of the
pseudorange observables and decoding of the navigation message,
and (2) the formation of a navigation solution from the pseudorange
observables and the information contained in the data message. Al-
though the GPS spoofing experiments just described are interesting,
all work to date has been designed to form incorrect pseudorange
observables, targeting Step 1 of the process. Although an incorrect
navigation solution is achieved, the software applications inside the
receiver are unaffected, and are always doing what they were de-
signed to do – they just received incorrect input and therefore gave
incorrect output.

Our approach is unique in that we do not typically target the
pseudorange measurements of Step (1) at all (although our system
is also capable of that). Instead we focus on targeting the soft-
ware applications necessary to implement Step (2). The spoofed
GPS signal becomes a carrier for a malicious data stream that tar-
gets software applications running inside the receiver, exploiting



specific vulnerabilities in those applications. The weaknesses ex-
ploited could be in the applications that form the navigation solu-
tion, or in downstream applications that interface with or use the
navigation solution. They also could be in the applications run-
ning on external computers that utilize information obtained over a
network from the receiver.

This style of attack is not jamming, nor is it traditional spoofing.
This paper documents what we believe to be the first practical cyber
attack launched on a system using a spoofed RF GPS signal.

Our attacks are novel over simulators because we can manipulate
individual navigation message bits and re-broadcast our attack such
that it is a code-phase aligned attack in real time. It is novel over
C/A spoofing again because the navigation message can be changed
in an arbitrary way. Like existing work [4], we can take over a
live satellite lock. There are fewer limitations to our attack over
C/A code replay, because we can change the navigation message
(ephemeris and almanac) and C/A PRN sequence live.

Another unique aspect of our approach is that it has the poten-
tial to be effective across multiple receivers over a large geographic
area. To be effective, a single spoofer has to target a specific an-
tenna in a known location [4]. This stems from the fact that it has to
produce from one antenna a composite signal that replicates signals
from multiple satellites, while still forming a consistent solution
at the receiver. Our approach does not suffer from that limitation
because the spoofed waveform is really only used as a vehicle to
carry the malicious data sequence, not attempting to replicate any
specific satellite geometry. Potentially, the only thing limiting the
range of our attack’s effectiveness, or the number of receivers af-
fected, is the power with which the signal is broadcast and line of
sight to the receiving antennas.

3 The Phase-Coherent Signal Synthesizer
The phase-coherent signal synthesizer (PCSS) is a device that si-
multaneously receives and transmits civil GPS signals. It has been
in part derived from the civil GPS spoofer described in [4] and as
such, many details about the performance and implementation of
the PCSS are similar. It is a software-defined radio (SDR) con-
structed using commercial hardware as well as hardware and soft-
ware we developed.

Figure 2: Photograph of the PCSS with its top cover removed

The input analog signal to the PCSS, shown in Figure 2, is the
composite of the broadcast GPS satellite signals received at a local
antenna. The antenna connects to the RF input to the PCSS. The
PCSS also contains an RF output, that one connects to a transmit
antenna for local area broadcast or to a coaxial cable that directly
connects to the target receiver.

The PCSS acquires and tracks broadcast GPS signals using stan-
dard techniques that can be found in [18]. Here, we define broad-
cast GPS signals as the legitimate signals broadcast from the GPS

satellites on orbit. The PCSS uses the estimated parameters from
each broadcast GPS satellite signal, such as code phase, carrier
Doppler shift frequency, and carrier phase, to synthesize new GPS
signals from scratch in real time. The synthesized signals also
include the modulated navigation data (described in [3]) that is
derived either from the received satellite signals, arbitrary user-
defined data, or a combination thereof. Additionally, navigation
data prediction is used to minimize digital delays within the PCSS
that would manifest as a time delay in the navigation data. Min-
imizing these delays that can be on the order of milliseconds, for
example, can improve the stealth of a traditional GPS spoofing at-
tack such as the one described in [4] or our new attacks.

The PCSS hardware consists of (i) radio frequency (RF) down-
conversion and up-conversion circuitry, (ii) analog-to-digital (ADC)
and digital-to-analog (DAC) converters, (iii) a high-end digital sig-
nal processor (DSP), (iv) an FPGA and hardware TCP/IP chip, (v)
an embedded microcomputer, (vi) a digitally-controlled attenua-
tor, and (vii) a large amount of flash memory. Figure 3 shows
a block diagram of how these different hardware components are
connected. The total cost of the commercial-off-the shelf hardware
is about $2,500 USD.

These hardware components, along with digital signal process-
ing and estimation software, all written in C++, implement a GPS
L1 C/A code receiver and a GPS L1 C/A code signal synthesizer.
The receiver tracks 10 GPS C/A code signals and the synthesizer
generates 10 GPS C/A code signals in real time.

SBC

DSP FPGA

TCP
Flash

Memory

Oscillator

RF
Down−

Conversion

DAC

ADC

GPS

Phase−Coherent Signal Synthesizer

Conversion

Up−
RF Synthesized

RF Signals

GPS RF In

Figure 3: Block Diagram detailing the design and operation of the
PCSS

The input RF port on the PCSS receives the broadcast GPS L1
signals from all satellites in view. The RF down-conversion cir-
cuitry mixes the composite GPS signal to an intermediate frequency.
The ADC then digitizes the signal to 2 bits. Quantizing the compos-
ite signal to 2 bits (4 levels) is sufficient for GPS signals, because
they are below the noise floor in the L1 band, thus one is sim-
ply quantifying the additive Gaussian white noise that, in the worst
case, causes loss of≈ 0.7 dB [18] of the GPS signals. This digital
signal is processed by a GPS software-defined receiver running on
the high-end Texas Instruments TMS3206455 DSP clocked at 1.2
GHz. The output of the receiver is a set of estimated parameters
including the satellites in view, their pseudoranges, carrier Doppler
shift frequencies, carrier phases, and the time, position, and veloc-
ity of this receiver’s antenna. These parameters are input into the
GPS signal synthesizer, which is also implemented in software and
also runs on the DSP chip. The GPS signal synthesizer takes the
input parameters, manipulates them based on the specific attack se-
lected, generates a set of GPS signals containing the time-phased
PRN codes and the navigation data, adds them together and then



outputs them to the DAC. The output of the DAC is connected to
the RF up-converter that has two stages of up-conversion, with a
narrowband band-pass filter between the two stages to eliminate
the sampling images. The up-converted signal is centered at the
GPS L1 frequency and sent to the output RF port on the PCSS. The
digitally-controlled attenuator provides the ability to dynamically
control the power level of the output RF signal during an attack.

The PCSS has the same capabilities as the spoofer in [4], but the
PCSS has the following improvements:
• The PCSS generates and transmits code-phase coherent GPS

signals
• The PCSS intentionally manipulates the information content

of the 50bps GPS navigation message
• The PCSS contains internal digital IF data record and play-

back circuitry and 32 GB of flash memory for storing the
data
• The PCSS has an API to control spoofing attacks
• The PCSS transmitter hardware contains a 2 MHz bandpass

filter

These improvements are described in more detail below.
First, the PCSS generates code-phase-coherent GPS signals that

can be aligned in phase with the satellites’ broadcast GPS signals
arriving at the PCSS’s input antenna. The accuracy of the phase
coherency is a small fraction of a GPS L1 C/A code chip, whose
duration is nominally 1 microsecond or equivalently 300 meters.
Thus, the phase-coherency is typically better than 10 meters. Gen-
erating code-phase coherent signals allows the PCSS to target a
GPS receiver, possibly at a long stand-off distance, by aligning its
generated GPS signals to the broadcast GPS signals that arrive at
the target receiver’s antenna. This is beneficial, because it is neces-
sary to have the target receiver track and process the PCSS’s signals
for an attack on the target to be successful. The PCSS output power
can be adjusted, e.g., to start at the noise floor and slowly ramp up
until a stealthy lock is obtained. A key component to generating
code-phase coherent signals is knowing the GPS data bits in the
navigation message a priori. Since this is typically impractical, re-
liable GPS data bit prediction is used. Note that it was recently
reported that Wesson et al. have also recently created a spoofer that
is code-phase coherent [20].

Second, the PCSS can modify the information content of the
GPS navigation message on each generated GPS signal (one for
each satellite in view) in real time. To the best of our knowledge,
the PCSS is the first to offer this ability. The specific modifications
enabled in the current version of the PCSS are the ability to set the
square root of the semi-major axis of the GPS satellites’ orbits, both
in the ephemeris and in the almanac, to an arbitrary number; to re-
place all of a satellite’s ephemeris parameters in subframes 1-3 with
that of another satellite; to set the GPS week number in subframe 1
to an arbitrary number; to set the IODE and IODC parameters for
each satellite to arbitrary numbers; and to set the leap seconds in
subframe 4, page 18 to an arbitrary number. Modifying any param-
eter in the navigation message typically requires real-time calcula-
tion of a new 6-bit parity code in the (32,26) Hamming code for
each word. Furthermore, since the navigation message implements
a bit-inversion process that is a function of the previous word’s last
bit (except for word 3), this has to be taken into consideration too.

Third, the PCSS contains an API that allows for programmatic
modification in real time of the phase of the GPS PRN codes and
the navigation message data. Specific attacks are created using the
API, and can be selected to run via a web interface.

Fourth, the PCSS has the ability to record to an internal flash
drive either the input digital IF data stream containing the broad-
cast GPS signals or the output digital IF data stream containing the
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Figure 4: Distribution of receivers on CORS network

synthesized GPS signals. Recorded signals can be played back to
a target receiver by the PCSS. Playback corresponds to streaming
of the digital data at the correct cadence to the DAC and then up-
conversion to the GPS L1 frequency. The PCSS contains a small
FPGA and hardware TCP/IP IC that connects to both the ADC and
DAC. The digital signal to be recorded can be selected and then
transferred via TCP packets to the embedded computer and then
stored on a 32 GB flash drive. Having this record capability em-
bedded in the PCSS is convenient. This is because the generation
of new GPS signals is based on top of the live broadcast GPS signal,
which practically means no two sets of synthesized signals are the
same. Having the ability to record and then play back the signals
provides the ability to identically repeat an experiment.

Fifth, the PCSS uses a two-stage RF up-conversion process with
a 2-MHz bandpass filter to remove artifacts of the digital sampling
process. This filter helps remove information in the synthesized
GPS signal that could be used to distinguish a spoofer’s signals
from a legitimate GPS satellite signal.

4 Methodology
Receivers Investigated We investigated attacks against seven
different receivers. Each of these receivers have their own purposes
and therefore security considerations. The receivers span from con-
sumer grade, costing a few hundred dollars, to professional grade,
costing up to about $17,500.

Our consumer receivers investigated are the Magellan eXplorist
310, Garmin eTrex Legend HCX, GlobalSat ND-100S, uBlox EVK-
6H, LOCOSYS 23060 and iFly 700. The first two devices are hand-
held receivers primarily targeted for personal navigation, for ex-
ample hiking or biking, while the iFly is used by private pilots for
navigation. The LOCOSYS chip is an OEM device consisting of a
GPS antenna and chipset. It was borrowed from researchers who
were using it inside quadcopter UAVs. The GlobalSat is a pack-
aged version of the SiRF-III GPS chip, used widely for high-end
consumer devices. The uBlox is an evaluation kit for the uBlox
GPS chip, which is sold for industrial and automotive applications.
Both the eXplorist and iFly receivers run on Windows CE, while
the eTrex receiver runs on a custom operating system.

The first professional receiver is the Trimble NetRS. The NetRS
is intended to be used as a reference station, with a retail cost of
about $17,500. The NetRS is widely used in safety-critical settings,
such as the CORS network (operated by the United States National
Geodetic Survey) and the NTRIP network. We picked the NetRS
because it is by far the most popular deployed reference station in



the CORS (about 30% of all receivers, see Figure 4) and NTRIP
(1126 out of 3963 stations surveyed, or about 22% of all receivers)
networks. The NetRS runs Linux on a PPC chip, provides an eth-
ernet port, and runs several network services such as a web server
(for configuration and displaying data), an FTP server, and a NTP
server.

The second professional receiver is an Arbiter 1094B Substation
Clock, which is marketed for use as an accurate time source for
Phasor Measurement Units (PMUs) in power stations. PMUs are
intended to monitor the power phase at multiple points in the power
grid, with any change in phase between two PMUs at the same time
indicating a change in power flow. The Arbiter clock aims to be
synchronized to within 100ns of GPS time so that PMU readings
across geographically distant regions are synchronized. We bought
this unit for $1,350, which is the price of similar timing receivers.
This specific receiver was chosen due to its high accuracy, serial
communications capabilities, and because it is advertised for use
within the power grid.

Note that all receivers calculate the navigation solution in firmware,
which is closed-source. The main implication is that receivers act
as a black box: we often have no idea how it is processing data, or
why a fault may occur. Open-source daemons such as gpsd read the
navigation solution via a serial link protocol from the appropriate
device driver. If the firmware was open-sourced, we could poten-
tially use classic software testing strategies (e.g., symbolic execu-
tion, model checking, and fuzzing 2). Thus in our study the PCSS
was absolutely essential since we are effectively only given black
box access to the GPS via the RF port.

Testing All our GPS RF attacks are transmitted via the PCSS over
coaxial cable using an SMA port. For the professional receivers, no
modification was required, as each has ports for external antennas.
However, each of our consumer receivers had to be retrofitted with
an SMA antenna port through which our signal could be broadcast.
This modification required disassembling the GPS receiver, remov-
ing the internal antenna, and soldering on an SMA port. Although
the iFly receiver had an external antenna port available, we also
replaced it with an SMA port for easier interfacing.

The GPS signal reaching the surface of the earth is approxi-
mately -160 dBW (1 × 10−16 watts), roughly the equivalent of
viewing a 25-watt light bulb in Japan from Los Angeles [19]. Broad-
casting at any power would likely affect receivers outside the au-
thors’ control, and besides being dangerous, would also potentially
be a violation of US law. Although using the coaxial cable has the
unfortunate limitation that we cannot investigate atmospheric and
ionospheric effects and antenna angle-of-arrival effects (gain and
polarization) on the attacks, it is the safest approach. Of course
a real attacker need not be constrained by US law, and would not
use a coaxial cable. A sufficiently large protected chamber that
shields RF emissions, e.g., an anechoic chamber could allow more
experimentation with antenna effects and multiple GPS sources.
However, protected chambers also typically shield incoming sig-
nals (including the real GPS signal), making it difficult to come up
with a safe yet realistic experiment. With the RF output connected
to an antenna rather than directly to a device, our spoofing range
for a receiver would be limited primarily by power output, line of
sight, and knowledge of a target’s location. If these conditions are
satisfied, spoofing of receivers up to 100km away is feasible.

The PCSS is connected to an antenna mounted on the roof. Sig-
2Blackbox fuzzing is impractical for GPS due to the amount of time
it takes for the receiver to get navigation data (tens of seconds) and
the inability to get feedback from GPS devices due to their closed
nature.

nals were synthesized in real time as the experiments were per-
formed. We verified that each receiver could acquire satellite lock
and compute a navigation solution when the PCSS simply passed-
through the real GPS signal before proceeding with our testing.

5 Attacks
Our attacks view GPS receivers as a software system. Each layer
of the system is roughly analogous to layers in the OSI model, with
its own set of security vulnerabilities and associated defenses. In
this section we detail our attacks. In the next section we address
defenses. We investigated several attacks in the course of our re-
search; due to space we only detail attacks that were successful
against at least one receiver. Table 1 shows our overall results.

5.1 Data Layer Attacks
The below attacks are carried out by manipulating data in the nav-
igation message of the GPS signal. Therefore, previous spoofers
which could only change the offsets in the PRN are not capable
of carrying out any of these higher level attacks. Further, vulner-
abilities at this level are due to software bugs in the processing of
the navigation message, making them an entirely different class of
attack from previous spoofing.

Middle-of-the-Earth Attack Recall the ephemeris data con-
tains sufficient information for a receiver to calculate each satel-
lite’s position. Part of the ephemeris data is the square root of the
semi-major axis

√
A of the satellite’s orbit. In our attack, we set√

A = 0. This is similar to telling the receiver that the satellite is
in the middle of the Earth.

We performed this attack on all receivers in order to determine
which would reject the bogus data. All receivers except the NetRS
rejected the data. In the Trimble NetRS, the gpssd daemon caught
an exception and died. We speculate that the exception was a
division-by-zero error, though there is no way to verify this without
source (the actual error seems to be triggered in the closed-source
firmware). Let µ be the WGS-84 value of the Earth’s gravitational
constant. The GPS specification has the receiver compute the mean
motion n0 of the satellite (rad/sec) as [3]:

a = (
√
A)2 n0 =

√
µ
a3

The NetRS attempted to resolve the error by rebooting. Unfor-
tunately, the NetRS appears to cache ephemeris data. Caching is
quite common and is the reason a warm-boot of a GPS receiver
takes less time to acquire lock. Since the ephemeris was cached,
the receiver made the same faulty calculation, again erred, and the
system entered an infinite reboot cycle. The receiver only recov-
ered after a full hardware reset was manually performed.

The almanac data also contains the same parameter
√
A. We

carried out the attack successfully against the NetRS, again with
the same continual reboot behavior, using the almanac parameter√
A = 0. This experiment shows that the NetRS does not appear

to correlate the ephemeris data with the almanac data.
To the best of our knowledge, our attack is the first demonstra-

tion of a cyber-attack (a DoS) over RF against GPS. Overall, in
our attack the attacker needs only transmit the bogus data until the
receiver decodes the ephemeris, which typically takes 30 seconds.
After the ephemeris is decoded, the receiver will enter a reboot
cycle even after the attack is stopped. Thus, the attack achieves
a similar goal to jamming: denying service, but unlike jamming,
does not require continual broadcast. While DoS is not considered
especially harmful in typical computer networks, availability of the
GPS heartbeat is typically critical in applications that actually use



uBlox UAV iFly eXplorist eTrex NetRS Arbiter

Vulnerable to Middle-of-the-Earth
√

Vulnerable week #
√ √ √ √ √ √

Vulnerable to Date De-synchronize
√

Vulnerable OS
√ √ √

Spoofable
√ √ √ √ √ √ √

Table 1: Successful attacks against receivers.

GPS. As the NetRS composes about 30% and 20% of the global
CORS and NTRIP networks, respectively, the implications of this
attack are widespread.

A demonstration of this attack on the NetRS receiver has been
made available at http://youtu.be/6K8dD2PCI6s.

Vulnerable Week Number Date calculations in GPS receivers
are done using the Z-count, which consists of a 10 bit Week Num-
ber (WN) and 9 bit Time of Week field.

In our attack, we first set the week number to be one past the
current week. No other data was changed in the navigation mes-
sage. When the ephemeris expired (the IODC and IODE changed),
all receivers except the eXplorist accepted the new week number.
We were then able to set the week number to any value in the 10
bit range.

Date De-synchronization Attack With only 10 bits in which
to store the WN, rollovers occur about every 19.7 years. Rollover
is understood and expected in GPS, as the first event took place
over a decade ago in 1999. The handling of these rollover events
is still left up to the manufacturer’s discretion in the original GPS
specification [3]. In the specification for the next-generation GPS,
the WN field is planned to be extended to 13 bits, leading to less
frequent epoch rollover of once every 157 years.

To see the extent to which we could alter the date on the GPS,
we simulated rollover events. In the attack, rollover is simulated by
alternating between high (all 10 bits set), low week numbers (1-5
bits set), and medium week numbers (8-9 bits set). 3 We also set
the IODC and IODE to arbitrary (new) values, telling the receiver
that the data issued is new and should be decoded. At this point,
the GPS receiver should use an internal clock to decide whether
it is reasonable for a rollover event to be occurring. In our Arbiter
receiver, however, no internal clock comparison appears to be done,
and the device increments the week epoch faithfully.

The Arbiter suffered permanent damage from this attack. The
clock handles week rollover using an internal counter stored in non-
volatile memory. This way, if the received week number reaches
the maximum and then decrements, it is due to a rollover event and
the week epoch is incremented. In normal operation, such behavior
would indeed be correct, however, it is possible to broadcast a GPS
signal with a false week number. By slowly alternating between
high and low week numbers, the receivers perceived the GPS week
epoch rollover was occurring, each time incrementing the base date
by almost 20 years. The substation clock provides no way to decre-
ment the week epoch. Multiple days without power, attempts to
change the date through commands over the serial console, and
reloading the firmware of the device proved unsuccessful for decre-
menting the year on the clock, rendering the device practically use-
less as a sub-microsecond accurate time source. Figure 5 shows
the Arbiter’s display when it acquires the unmodified GPS signal
3We found without using intermediate week numbers, the receiver
could revert backwards rather than move forwards.

Figure 5: Arbiter PMU clock time after date-desync attack.

after the attack has ceased. This date de-synchronization attack de-
pends on the manufacturer’s handling of week rollover events, and
will not be alleviated by increasing the length of the WN by 3 bits.
In fact, increasing the time between week rollover events increases
the severity of this attack. As our week rollover attack pushes time
forward on the receiver by the length of the week epoch, increasing
this time frame simply allows us to jump forward by even larger
amounts of time.

5.2 The OS Layer
GPS receivers are typically treated as hardware devices, yet they
often run a full OS stack. We identified the OS on three receivers:
the Magellan, the iFly, and the NetRS. In all cases we were able to
gain root access.

The NetRS The NetRS runs Linux, and can be networked via
an Ethernet port. Network-facing services include an NTP server,
an HTTP server, and an FTP server. While we would expect them
to be on private networks, they also often appear on the Internet
at large (e.g., by Googling identifying strings in the NetRS web
interface). We discovered numerous security flaws.

First, the receiver’s web configuration interface requires no pass-
word by default. Further, even if a user chooses to require login
credentials, there is still an administrative user included by default
with a password which is the same across all receivers.

By navigating to the Programmatic Interface, a malicious user
can upload a configuration file to a Perl CGI program with a spe-
cially crafted filename. The NetRS then copies this file to a tem-
porary location, however, it does this by calling the Linux cp com-
mand with an improperly sanitized version of the filename which
was uploaded. This allows a carefully crafted filename to execute
arbitrary commands on the system as the www-data user.

Further, the www-data user is given sudo privileges for some
basic commands such as cp, mount, and mv, trivially allowing
an attacker to gain root privileges on the machine by replacing the
/etc/sudoers file with a version which gives the www-data
access to run all commands with root privileges. Once on the sys-
tem, an attacker could poison the GPS data to interfere with GPS
measurements, or use the computer as a normal Linux host.

http://youtu.be/6K8dD2PCI6s


Second, Trimble uses a single master Linux image for all instal-
lations, called the “firmware” at their website. The current firmware
has a relatively old Linux revision: 2.4.19. The image contains a
copy of all programs, which allow an attacker to easily find addi-
tional vulnerabilities. Worse, the firmware has a default password
for root in /etc/passwd with no public interface to change it. Thus,
it appears likely that most receivers on the Internet share the same
root password. Although we used a password cracker to attempt
to find the password, we were not successful after running it for
months on a modern CPU. This suggests that at least the password
used in the NetRS is relatively strong.

Finally, we note the NetRS image did not have modern OS de-
fenses such as ASLR enabled. The NetRS also did not appear to
have any way to perform software updates other than installing a
new firmware image, making patching onerous.

Windows System Both the Magellan and iFly receivers run on
top of Windows CE 5.0. Both allow access to their file systems
through USB or an SD card slot for the purpose of updating GPS
maps and device firmware. By uploading executables through ei-
ther of these two interfaces, we are able to run arbitrary code, in-
cluding Windows Explorer and its associated tools. This could lead
to malware or identification of new software vulnerabilities which
could be exploited on the Data Layer.

This problem has been seen in mobile devices, such as smart-
phones, in the past. In general, manufacturers can solve this by
requiring code to be signed in order to run or by restricting direct
access to the file system on the device. While some users may see
the ability to use their GPS receiver as a general purpose computer
as a feature rather than a vulnerability, and indeed such communi-
ties exist for using GPS devices effectively as PDAs, the security
ramifications of running untrusted code on devices intended to nav-
igate and track people are serious.

5.3 GPS-Dependent Systems
GPS systems are used as an authoritative time source in many ap-
plications. Here we show the ramifications of the ability to spoof
and damage GPS receivers to dependent systems. Our goal is not to
provide an extensive list (which is likely very long), but to demon-
strate that attacks on dependent systems are indeed practical.

Fixed-Width Year Attacks Recall that we can increment the
date by approximately 20 years per ephemeris decoded by the re-
ceiver. The date de-synchronization attack gives us a black-box
way to remotely (via RF) cause rollover in fixed-width date fields,
similar to the Y2K problem.

For example, the Arbiter provides a time synchronization ser-
vice for Windows XP. Windows XP dates must be in the range
1980-2099. Although the system will continue to operate after this
range of times, some critical aspects of the system, such as file
time-stamps used in FAT file systems will not work, as they are
stored as unsigned 7 bit integers. In our experiments, we confirmed
the date could be incremented at least up to 2110 (see Figure 5) and
alter Windows XP dates.

A second example is the UNIX epoch roll-over will happen in
2038 for software that uses a 32-bit signed number for the date
(e.g., time_t on Debian Squeeze). We experimented with 32-bit
Debian Squeeze install, and found that the time_t and struct
timeval data structures use 64-bits. However, the ext3 file sys-
tem was vulnerable: after incrementing the date past 01/18/2038
22:14:14, rollover occurred in the time stamps for files, as well as
the output of the date command. Therefore, applications that trust
the date command, or perform critical operations based upon file
system dates, may be vulnerable to attack.

Decoding takes about 30 seconds, which means in principle we
can increment about 40 years per minute. The first 6-digit date is
the year 100,000. So we would need to increment about 97,989
years to cause rollover, which would take about 1.7 days.

NTRIP The NetRS is often deployed as a reference station which
not only receives GPS information, but also transmits correction
data to other receivers. The CORS and NTRIP networks are de-
signed to facilitate locating nearby correction data sources and trans-
mitting of the correction data to clients. Since deliberate GPS sig-
nal degradation was disabled, a typical GPS receiver will experi-
ence a position error of around 10-15 meters [1]. NTRIP attempts
to give centimeter-level accuracy, e.g., for autonomous driving of
tractors or other vehicles.

Decimeter-level accuracy is possible by using differential GPS
techniques. For example, several stationary NetRS’s can be con-
figured to use differential GPS to calculate accurate true position
information. The NetRS then continues to calculate the current
position and use measured position changes to estimate GPS er-
rors, which can be broadcast as a correction solution for nearby
devices. Variations are due to changes in local atmosphere, satel-
lite ephemerides, etc. NTRIP sources broadcast the correction data
over the NTRIP protocol, which can run on top of IP, EDGE, or
other network protocols. The protocol is designed to also help
clients find the closest NTRIP source. The closest source is de-
sirable because relative error sources, e.g., atmospheric conditions,
are most likely to be similar. The NetRS and NTRIP are also ca-
pable of supplying Real Time Kinematic data, which provide even
more accurate positioning information for nearby receivers.

We set up a NTRIP testbed consisting of the NetRS, which served
as the correction data server (called a Caster in NTRIP), and several
receivers. We confirmed that our attacks flowed through to clients
connecting to our server, causing them in turn to calculate erro-
neous navigation solutions. We note that joining the global NTRIP
network only requires filling out an appropriate form. 4 We did not
test this as the network operators request a long-term commitment
to provide data.

NTP Modern computers use NTP extensively time synchroniza-
tion, with NTP clients packaged by default on nearly all modern
operating systems. In turn, this time is used for many other pur-
poses including cryptographic communication, shared file systems,
and even data for the Health Insurance Portability and Accountabil-
ity Act (HIPAA) which requires accurate timestamps on medical
records.

NTP relies on computers connected directly to high precision
clocks. In general, NTP servers are classified by their Strata, with
a Stratum-1 server being directly connected to a clock, a Stratum-2
server connecting directly to a Stratum-1 server, and so on. GPS is
commonly used as a Stratum-1 time source.

Our analysis showed that of the Stratum-1 servers in the public
NTP.org pool, at least 148 servers 5 used GPS for time synchro-
nization, or at least 65% of the pool.

NTP works by retrieving time estimates as well as error intervals
(t ± λ) from some client-specified list of servers. A time interval
on which at least half of the queried servers agree is then selected,
and the actual time reported is then based on a clock in this range.
This means that directly spoofing the time for a client connected
to multiple Stratum-1 servers could be done only if an attacker had
4http://igs.bkg.bund.de/ntrip/
registerprovider
5Some NTP servers do not list the devices they use for time syn-
chronization, so only a lower bound may be obtained.

http://igs.bkg.bund.de/ntrip/registerprovider
http://igs.bkg.bund.de/ntrip/registerprovider


the capability to spoof at least half of the servers used by a client at
the same time. Although this may be feasible for a dedicated orga-
nization, it can be difficult especially if clients specify numerous,
geographically separated NTP servers.

However, given an NTP client which normally reports a time in-
terval I = [t − λ, t + λ], an attacker who can modify only one
NTP server (say, by spoofing the GPS clock used by the server)
may change the time reported to the client to a subset of I or pre-
vent the client from selecting a clock by forcing that there does not
exist an interval on which a majority of servers agree. If a client
queries only a small number of servers, which was typical, such
attacks are readily done. This would lead to growing inaccuracies
in the client’s clock over time, though the inaccuracies would not
be entirely under attacker control. [7]

Monitoring an NTP client on an author’s computers, (see Figure
6) we noted that interval widths in typical operation were typically
from hundreds milliseconds to one second.

This amount is small for most consumer purposes, but consid-
ering NTP accuracy should be on the order of 10ms over a WAN,
pushing time towards an extreme end of the interval could have
a large impact. For example, industrial automation, SCADA sys-
tems, and operations management commonly need sub-second tim-
ing for proper operation, and commonly use NTP to accomplish
this.[14]

5.4 Pseudorange Attack
We have also independently verified the results of previous work in
spoofing [4]. In this attack we estimated the received GPS signals
parameters, and then synthesized new signals at different relative
PRN code offsets.

Recall a receiver calculates its position in space-time via trilat-
eration. If we modify one of the satellite’s PRN offsets, but not
others, then we affect one dimension of the navigation solution. If
we shift all PRNs by an offset of the same amount, we only affect
the time dimension of the navigation solution. More generally, by
varying the PRN phase for particular satellites in a concerted way,
we can make a receiver’s navigation solution move in space-time.

We created two categories of spoofing attacks: one that manipu-
lated position and one for time. The time and position spoofing can
be carried out independently, or in combination. For position, we
created two spoofed modes. First, we spoofed receivers going in
a particular direction at a particular velocity. Second, we spoofed
receivers going in a circle, with a configurable diameter, speed,
and direction parameter. For the time spoofing, we have developed
three attacks that varied the rate at which time is changed as ei-
ther linear, exponentially, or logarithmic. All receivers accepted
the spoofed data for all attacks.

6 Defenses
Previous work has proposed several hardware defenses to detect
spoofers, e.g., [4, 6, 13, 20]. Example solutions include using
multiple antennas to detect the spoofer and adding cryptographic
authentication to the civilian signal. These are good long-term
suggestions to improving GPS security. However, current propos-
als require hardware or other significant modifications, e.g., by
adding new antennas or adding a hardware decryption unit (called
the SAASM in military receivers), making them inadequate in the
short term. Papadimitratos et al. [12], discuss a detection method
based on Doppler Shift observations during satellite takeover. This
technique can detect some spoofing attacks on certain high-end re-
ceivers without any hardware modification. In this section we de-

scribe device-specific software security recommendations, as well
as propose electronic GPS attack detection and whitening systems.

As this defense system functions at the data-level and higher, it
functions only to protect against attacks at a similarly high level.
Protecting against traditional spoofing attacks would still require
the capability to examine the physical-layer of the signal, which
necessitates some form of hardware device as detailed in previous
work.

6.1 Device-Specific Recommendations
Data-Level Protection One observation is that sanity check-
ing on input is spotty in receivers. The NetRS software notices an
error and attempts to reboot the receiver during our attack. How-
ever, it does not recognize that the cache should be cleared as well,
leading to a reboot loop. The date de-desynchronization attack is
a failure to check for consistency of the GPS week number with
what could be known from a cheap internal clock. The fact that the
damage is permanent on the Arbiter seems to be a software flaw:
Arbiter provides a serial configuration console which should allow
changing the date, but it does not work correctly to reset the date.

It is also interesting to note the more expensive receivers tended
to have more problems than cheaper receivers in our experience.
One possible explanation would be that more expensive receivers
have more functionality and perform more complicated processing
of the GPS signal, and thus have an increased risk to programmer
error.

OS-Level Defenses Our experiments show that GPS users and
manufacturers view receivers as hardware devices, not computers.
Nonetheless, they contain software vulnerabilities. While these at-
tacks may come as no surprise for those well acquainted with soft-
ware security, they appear often ignored by those in charge of de-
ploying GPS receivers for widespread usage.

At first glance our remote attack against the NetRS may seem
naïve: one may not expect most GPS receivers to be networked,
least of all accessible through the internet. However, simple Google
searches revealed over a dozen NetRS receivers whose web in-
terfaces were accessible remotely (despite the web server of the
NetRS disallowing indexing on all pages by default). Further, be-
cause these are CORS receivers, they are almost always on some
type of network in order to send their correction data to other de-
vices. In fact, we were able to find publicly accessible websites
for other CORS receivers such as the Trimble NetR5 and the Leica
GRX1200+, showing that it is not uncommon for CORS receivers
to be accessible from the public internet. Apart from simply us-
ing access to these devices to disrupt GPS measurements, there are
many other attack scenarios. For example, several receivers which
are web accessible reported internal NAT IP addresses, meaning
a compromise of the GPS receiver could function as a launching
point for attacks on the internal network.

The issue of running untrusted code on GPS receivers is more of
a symptom rather than a problem itself. The requirement of physi-
cal access makes this vulnerability a very unlikely attack vector, but
is indicative of a larger attack surface. First, because these receivers
commonly run very large software stacks with full blown operating
systems and due to the specialized nature of these devices, much
of the included software does nothing but contribute to the already
large number of programs in which bugs may be found. Second,
the manufacturers of these devices did not have security in mind
when developing these systems. Even if loading code onto a physi-
cal device is not a likely vector for widespread attacks, code signing
on embedded systems at some level should be a common practice,



as untrusted code posing as maps, games, or firmware updates may
easily break a user’s device either maliciously or accidentally.

One immediate best practice would be for GPS receiver man-
ufacturers to build and deploy automated software update mech-
anisms. At present, users typically must go to the manufacturers
home page, download the update, and then transfer it to the re-
ceiver. Other recommendations include receivers white-listing pro-
grams that can run, and implementing modern OS defenses such as
ASLR and DEP.

GPS Dependent Systems The NTP protocol uses a filter to
limit the damage of malicious navigation information. This is a
promising sign for protocols which rely upon GPS assuming that
multiple independent sources are used. We speculate, however, that
many corporate and government environments will only use a sin-
gle internal GPS time source as a time server in order to limit out-
side connectivity in their firewall, or as a matter of convenience.
We recommend users re-evaluate their risk levels with respect to
our findings: using only a single receiver as a time source leaves a
user vulnerable to spoofing and other attacks, while using external
time sources via NTP likely require appropriate holes in the fire-
wall.

Reference networks, such as CORS and NTRIP, broadcast cor-
rection data and are used for a large number of applications, and
thus should also adopt defenses that utilize multiple independent
sources. The NTRIP network consists of three types of entities:
NTRIP sources (the GPS receivers), NTRIP servers (for broadcast-
ing correction data), and NTRIP clients (which receive the correc-
tion data) [1]. NTRIP is used widely in agriculture, navigation,
and surveying. Unfortunately, the NTRIP protocol does not spec-
ify how aggregation among multiple sources is to be performed.
One recommendation is to specifically address counter-measures
to detect or filter out anomalous readings.

6.2 EGADS
Our attacks show that serious damage can be done to life and safety-
critical applications using only a few thousand dollars worth of
hardware. Since replacing or updating existing equipment may be
difficult, we propose deploying Electronic GPS Attack Detection
Systems (EGADS). An EGADS is similar in spirit to a network or
host IDS system, but designed to detect GPS attacks. To the best
of our knowledge, we are the first to propose using an IDS style
system to detect GPS spoofing attacks 6.

Our EGADS design has a rule-based and anomaly-based com-
ponent. The rule-based component detects known bad values, e.g.,√
A = 0, while the anomaly-based engine detects deviations given

known good almanac data. We have implemented EGADS on top
of a GlobalSat ND-100S USB GPS Receiver module based off of
the SiRF-III GPS chipset. This provides an output data stream
consisting of normal positioning values as well as almanac and
ephemeris data from the satellites.

The rule-based engine performs a pattern match on GPS pa-
rameters. To detect anomalies, we modified gpsd to check the
ephemeris data reported by a receiver against the freely available
almanac data provided by the United States Coast Guard. In Fig-
ure 7, we show typical discrepancies over a two week time span,
measured every two hours, between historical ephemeris values for√
A (retrieved from the NASA Crustal Dynamics Data Information

System) and the reference almanac used in EGADS for each partic-
ular day. Because these values are relatively static (though not all
6GAARDIAN is a proposed system for detecting interference, such
as from multipath errors, weather conditions, or jamming, and is
not designed for detecting spoofing attacks [8].

remain as static as the
√
A parameter), we find that the straight for-

ward approach to detection is effective. We combine these record-
ings with our own measurements, and double 7 the largest discrep-
ancy historically seen for each ephemeris field and for all satellites
we observed, giving us a range outside of which we should never
fall. If the receiver does report values outside of this range, EGADS
will issue a warning to the user.

Assisted GPS (AGPS) techniques also provide a fallback for ac-
curate navigation in areas where the GPS navigation message is
being disrupted. AGPS uses a set of ephemerides and almanac data
from external sources to acquire a GPS fix more quickly. An AGPS
receiver could be modified (as standard AGPS devices only use
external data to establish a fix) to ignore the Navigation Message
completely, and instead rely on data from a secure side channel to
continue operation.

Although this technique does not detect GPS spoofing of posi-
tion and timing data from the C/A code, it will warn of attempts to
crash receivers by creating bogus data in the GPS navigation mes-
sage. Our system can also detect attempted date de-synchronization
attacks easily, as it does not trust the GPS more than the inter-
nal computer clock. Further, this method detects things such as
fuzzing of ephemeris or almanac fields, and to some extent a replay
of recorded GPS data, all within seconds of broadcast.

As future work, we propose GPS whitening systems. Whitening
takes in a potentially anomalous or malicious signal, and retrans-
mits a known good signal. For example, we could augment the
PCSS to remove attacks from the GPS stream and rebroadcast a
clean signal to nearby receivers. This would improve upon the de-
vice in [5] by protecting against data-level attacks.

7 Conclusion
The intricate nature of today’s GPS devices has created a large at-
tack surface. Previous approaches have treated GPS security as an
issue of hardware and signal analysis, but many traditional software
security lessons have yet to be learned by GPS manufacturers. In
this paper, we introduced novel attacks on GPS devices at the data
level, many of which have serious ramifications to safety systems.
Our attacks required hardware that cost only about $2,500, which is
about the same as a laptop. We have shown our attacks are success-
ful against consumer and professional receivers. We also propose
defenses such as hardening GPS software against RF and network
attacks, as well as an attack detection system. Until GPS is se-
cured, life and safety-critical applications that depend upon it are
likely vulnerable to attack.
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APPENDIX
Although the main body of the paper reflects our overall
experimental results, the raw data collected can be seen in Figures
6 and 7.

Figure 6: NTP time interval observed over a 3 hour period,
polling from time.windows.com, time.ubuntu.com, and
time.nist.gov.
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Figure 7: The level of difference of the
√
A value of the ephemeris

against that of our reference almanac over a two week period.
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